Publications

Introduction

Telo Genomics benefits from over 20 plus years of foundational and translational research conducted by the Company’s founder Dr. Sabine Mai, in her academic laboratory at the Manitoba Institute of Cell Biology, University of Manitoba and affiliates.

The Company has had its technology validated in over 25 clinical studies, involving more than 3000 patients, and in 14 diseases. This is an index of over 140 related peer-reviewed journal articles.

The publications are available on https://pubmed.ncbi.nlm.nih.gov/

Smoldering Myeloma and Multiple Myeloma

1.    Kumar, S., Rajkumar, S. V., Jevremovic, D., Kyle, R. A., Shifrin, Y., Nguyen, M., Husain, Z., Alikhah, A., Jafari, A., Mai, S., Anderson, K., & Louis, S. (2024). Three‐dimensional telomere profiling predicts risk of progression in smoldering multiple myeloma. American Journal of Hematology. https://doi.org/10.1002/ajh.27364

2.    Louis, S.,Mai, S., & Knecht, H. (2023). The 3D- Telomere Profiling Assay Identifies High Risk Smoldering Multiple Myeloma Patients with High Precision. Blood,142(Supplement 1), 3362–3362. https://doi.org/10.1182/blood-2023-18006

3.    Kumar, S.,Rajkumar, V., Jevremovic D., Kyle, R., Mai, S., & Louis, S. (2023). P975:Three-Dimensional Telomere Profiling Predicts Risk Of Relapse In Newly Diagnosed Multiple Myeloma Patients. HemaSphere, 7(S3), e07945f9–e07945f9. https://doi.org/10.1097/01.hs9.0000970804.07945.f9

4.    Kumar, S.,S. Vincent Rajkumar, Jevremovic D, Kyle, R. A., Mai, S., & Louis, S.(2023). Three-dimensional telomere profiling to predict risk of progression in smoldering multiple myeloma. Journal of Clinical Oncology, 41(16_suppl),8056–8056. https://doi.org/10.1200/jco.2023.41.16_suppl.8056

5.    Rangel-Pozzo,A., Yu, I., Lal, S., Asbaghi, Y., Luiza Sisdelli, Tammur P., Tamm, A., Punab,M., Klewes L., Louis, S., Knecht, H., Olujohungbe, A. & Mai, S. (2021).Telomere Architecture Correlates with Aggressiveness in Multiple Myeloma. Cancers,13(8), 1969–1969. https://doi.org/10.3390/cancers13081969

6.    Louis, S.,Rangel-Pozzo, A., Knecht, H., & Mai, S. (2020). Three-Dimensional Telomere Analysis Using Teloview® Technology Identifies Smouldering Myeloma Patients with High Risk of Progression to Full Stage Multiple Myeloma in a Proof of Concept Cohort. Blood, 136(Supplement 1), 19–20. https://doi.org/10.1182/blood-2020-140612

7.    Ivan Yu, P.L., Wang, Y., Tammur, M., Tamm, A., Punab, M., Rangel-Pozzo, A., & Mai, S.(2019). Distinct Nuclear Organization of Telomere sand Centromeres in Monoclonal Gammopathy of Undetermined Significance and Multiple Myeloma. Cells,8(7), 723. https://doi.org/10.3390/cells8070723

8.    Sathitruangsak, C., Righolt, C. H., Klewes, L., Tung Chang,D., Kotb, R., & Mai, S. (2017). Distinct and shared three-dimensional chromosome organization patterns in lymphocytes, monoclonal gammopathy of undetermined significance and multiple myeloma. International journal of cancer, 140(2), 400–410. https://doi.org/10.1002/ijc.30461

9.    Taylor-Kashton,C., Lichtensztejn, D., Baloglu, E., Senapedis, W., Shacham, S., Kauffman, M.G., Kotb, R., & Mai, S. (2016). XPO1 Inhibition Preferentially Disrupts the3D Nuclear Organization of Telomeres in Tumor Cells. Journal of cellular physiology, 231(12), 2711–2719. https://doi.org/10.1002/jcp.25378

10.    Martin, L.D., Harizanova, J., Mai, S., Belch, A. R., & Pilarski, L. M. (2016). FGFR3preferentially colocalizes with IGH in the interphase nucleus of multiple myeloma patient B-cells when FGFR3 is located outside of CT4. Genes, chromosomes & cancer, 55(12), 962–974. https://doi.org/10.1002/gcc.22394

11. Martin, L.D., Harizanova, J., Mai, S., Belch, A. R., & Pilarski, L. M. (2016). FGFR3preferentially colocalizes with IGH in the interphase nucleus of multiple myeloma patient B-cells when FGFR3 is located outside of CT4. Genes, chromosomes & cancer, 55(12), 962–974. https://doi.org/10.1002/gcc.22394

12. Sathitruangsak,C., Righolt, C. H., Klewes, L., Tammur, P., Ilus, T., Tamm, A., Punab, M.,Olujohungbe, A., & Mai, S. (2015). Quantitative super resolution microscopy reveals differences in nuclear DNA organization of multiple myeloma and monoclonal gammopathy of undetermined significance. Journal of cellular biochemistry, 116(5), 704–710. https://doi.org/10.1002/jcb.25030

13. Klewes, L.,Vallente, R., Dupas, E., Brand, C., Grün, D., Guffei, A., Sathitruangsak, C.,Awe, J. A., Kuzyk, A., Lichtensztejn, D., Tammur, P., Ilus, T., Tamm, A.,Punab, M., Rubinger, M., Olujohungbe, A., & Mai, S. (2013).Three-dimensional Nuclear Telomere Organization in Multiple Myeloma. Translational oncology, 6(6), 749–756. https://doi.org/10.1593/tlo.13613

14. Martin, L.D., Harizanova, J., Righolt, C. H., Zhu, G., Mai, S., Belch, A. R., &Pilarski, L. M. (2013). Differential nuclear organization of translocation-prone genes in nonmalignant B cells from patients with t(14;16) as compared with t(4;14) or t(11;14) myeloma. Genes, Chromosomes & Cancer, 52(6),523–537. https://doi.org/10.1002/gcc.22049

Hodgkin’s Lymphoma

1.   Knecht, H., Johnson, N., Bienz, M.N., Brousset, P., Memeo, L., Shifrin, Y., Alikhah, A., Louis, S.F., & Mai, S. (2024). Analysis by TeloView® Technology Predicts the Response of Hodgkin’s Lymphoma to First-Line ABVD Therapy. Cancers 16, 2816. https://doi.org/10.3390/cancers16162816

2.    Louis, S.,Johnson, N. A., Brousset, P., Ludkovski, O., Shifrin, Y., Mai, S., &Knecht, H. (2020). Three-Dimensional Telomere Analysis Using Teloview® Technology Predicts the Response of Classic Hodgkin’s Lymphoma Patients to First Line Therapy at Point of Diagnosis. Blood, 136(Supplement 1),36–37. https://doi.org/10.1182/blood-2020-140624

3.    Contu, F.,Rangel-Pozzo, A., Trokajlo, P., Wark, L., Klewes, L., Johnson, N. A.,Petrogiannis-Haliotis, T., Gartner, J. G., Garini, Y., Vanni, R., Knecht, H.,& Mai, S. (2018). Distinct 3D Structural Patterns of Lamin A/C Expression in Hodgkin and Reed-Sternberg Cells. Cancers, 10(9), 286. https://doi.org/10.3390/cancers10090286

4.    Knecht, H.,Johnson, N. A., Haliotis, T., Lichtensztejn, D., & Mai, S. (2017).Disruption of direct 3D telomere-TRF2 interaction through two molecularly disparate mechanisms is a hallmark of primary Hodgkin and Reed-Sternberg cells. Laboratory investigation; a journal of technical methods and pathology,97(7), 772–781. https://doi.org/10.1038/labinvest.2017.33

5.    Knecht, H.,& Mai, S. (2017). The Use of 3D Telomere FISH for the Characterization of the Nuclear Architecture in EBV-Positive Hodgkin's Lymphoma. Methods in molecular biology, 1532, 93–104. https://doi.org/10.1007/978-1-4939-6655-4_6

6.    Righolt, C.H., Knecht, H., & Mai, S. (2016). DNA Super resolution Structure of Reed-Sternberg Cells Differs Between Long-Lasting Remission Versus Relapsing Hodgkin's Lymphoma Patients. Journal of cellular biochemistry, 117(7),1633–1637. https://doi.org/10.1002/jcb.25456

7.    Lajoie, V.,Lemieux, B., Sawan, B., Lichtensztejn, D., Lichtensztejn, Z., Wellinger, R.,Mai, S., & Knecht, H. (2015). LMP1 mediates multinuclearity through down regulation of shelterin proteins and formation of telomeric aggregates. Blood,125(13), 2101–2110. https://doi.org/10.1182/blood-2014-08-594176

8.    Kongruttanachok,N., Cayre, Y. E., Knecht, H., & Mai, S. (2014). Rapid separation of mononuclear hodgkin from multinuclear reed-sternberg cells. Laboratory hematology:official publication of the International Society for Laboratory Hematology,20(1), 2–6. https://doi.org/10.1532/LH96.12023

9.    Righolt, C.H., Guffei, A., Knecht, H., Young, I. T., Stallinga, S., van Vliet, L. J.,& Mai, S. (2014). Differences in nuclear DNA organization between lymphocytes, Hodgkin and Reed-Sternberg cells revealed by structured illumination microscopy. Journal of cellular biochemistry, 115(8),1441–1448. https://doi.org/10.1002/jcb.24800

10. Knecht, H.,Righolt, C., & Mai, S. (2013). Genomic Instability: The Driving Force behind Refractory/Relapsing Hodgkin's Lymphoma. Cancers, 5(2), 714–725. https://doi.org/10.3390/cancers5020714

11. Knecht, H.,Kongruttanachok, N., Sawan, B., Brossard, J., Prévost, S., Turcotte, E.,Lichtensztejn, Z., Lichtensztejn, D., & Mai, S. (2012). Three-dimensional Telomere Signatures of Hodgkin- and Reed-Sternberg Cells at Diagnosis Identify Patients with Poor Response to Conventional Chemotherapy. Translational oncology, 5(4), 269–277. https://doi.org/10.1593/tlo.12142

12. Knecht, H.,& Mai, S. (2011). 3D imaging of telomeres and nuclear architecture: An emerging tool of 3D nano-morphology-based diagnosis. Journal of cellular physiology, 226(4), 859–867. https://doi.org/10.1002/jcp.22425

13. Knecht, H.,Brüderlein, S., Wegener, S., Lichtensztejn, D., Lichtensztejn, Z., Lemieux, B.,Möller, P., & Mai, S. (2010). 3D nuclear organization of telomeres in the Hodgkin cell lines U-HO1 and U-HO1-PTPN1: PTPN1 expression prevents the formation of very short telomeres including "t-stumps". BMC cell biology, 11, 99. https://doi.org/10.1186/1471-2121-11-99

14. Guffei, A.,Sarkar, R., Klewes, L., Righolt, C., Knecht, H., & Mai, S. (2010). Dynamic chromosomal rearrangements in Hodgkin's lymphoma are due to on going three-dimensional nuclear remodeling and breakage-bridge-fusion cycles. Haematologica,95(12), 2038–2046. https://doi.org/10.3324/haematol.2010.030171

15. Knecht, H.,Brüderlein, S., Mai, S., Möller, P., & Sawan, B. (2010). 3D structural and functional characterization of the transition from Hodgkin to Reed-Sternberg cells. Annals of anatomy, 192(5), 302–308. https://doi.org/10.1016/j.aanat.2010.07.006

16. Knecht, H.,Sawan, B., Lichtensztejn, Z., Lichtensztejn, D., & Mai, S. (2010). 3DTelomere FISH defines LMP1-expressing Reed-Sternberg cells as end-stage cells with telomere-poor 'ghost' nuclei and very short telomeres. Laboratory investigation; a journal of technical methods and pathology, 90(4),611–619. https://doi.org/10.1038/labinvest.2010.2

17. Knecht, H.,Sawan, B., Lichtensztejn, D., Lemieux, B., Wellinger, R. J., & Mai, S.(2009). The 3D nuclear organization of telomeres marks the transition from Hodgkin to Reed-Sternberg cells. Leukemia, 23(3), 565–573. https://doi.org/10.1038/leu.2008.314

18. Knecht H, Petrogiannis-Haliotis T, Louis S, Mai S . (2024). 3D-Q-FISH/Telomere/TRF2 Nanotechnology Identifies a Progressively Disturbed Telomere/Shelterin/Lamin AC Complex as the Common Pathogenic, Molecular/Spatial Denominator of Classical Hodgkin Lymphoma. Cells 13(21), 1748. https://doi.org/10.3390/cells13211748

Plasmacytoma

1.   Schmälter, A. K., Righolt, C. H., Kuzyk, A., & Mai, S.(2015). Changes in Nuclear Orientation Patterns of Chromosome 11 during Mouse Plasmacytoma Development. Translational oncology, 8(5),417–423. https://doi.org/10.1016/j.tranon.2015.09.001

2.    Kuzyk, A.,& Mai, S. (2012). Selected telomere length changes and aberrant three-dimensional nuclear telomere organization during fast-onset mouse plasmacytomas. Neoplasia (New York, N.Y.), 14(4), 344–351. https://doi.org/10.1593/neo.12446

3.    Wiener, F., Schmälter, A. K., Mowat, M. R., & Mai, S.(2010). Duplication of Subcytoband 11E2 of Chromosome 11 Is Regularly Associated with Accelerated Tumor Development in v-abl/myc-Induced Mouse Plasmacytomas. Genes & cancer, 1(8), 847–858. https://doi.org/10.1177/1947601910382897 (journal cover)

Myelodysplastic syndromes/acute myeloid leukemia

1.    Rangel-Pozzo,A., Corrêa de Souza, D., Schmid-Braz, A. T., de Azambuja, A. P., Ferraz-Aguiar,T., Borgonovo, T., & Mai, S. (2019). 3D Telomere Structure Analysis to Detect Genomic Instability and Cytogenetic Evolution in Myelodysplastic Syndromes. Cells, 8(4), 304. https://doi.org/10.3390/cells8040304

2.    Gadji, M.,Adebayo Awe, J., Rodrigues, P., Kumar, R., Houston, D. S., Klewes, L., Dièye,T. N., Rego, E. M., Passetto, R. F., de Oliveira, F. M., & Mai, S. (2012).Profiling three-dimensional nuclear telomeric architecture of myelodysplastic syndromes and acute myeloid leukemia defines patient subgroups. Clinical cancer research: an official journal of the American Association for Cancer Research, 18(12), 3293–3304. https://doi.org/10.1158/1078-0432.CCR-12-0087

Leukemia

1.    De Oliveira,F. M., Jamur, V. R., Merfort, L. W., Pozzo, A. R., & Mai, S. (2022).Three-dimensional nuclear telomere architecture and differential expression of aurora kinase genes in chronic myeloid leukemia to measure cell transformation. BMC Cancer, 22(1). https://doi.org/10.1186/s12885-022-10094-5

2.    Samassekou,O., Hébert, J., Mai, S., & Yan, J. (2013). Nuclear remodeling of telomeres in chronic myeloid leukemia. Genes, chromosomes & cancer, 52(5),495–502. https://doi.org/10.1002/gcc.22046

3.    Paul, J. T.,Henson, E. S., Mai, S., Mushinski, F. J., Cheang, M., Gibson, S. B., &Johnston, J. B. (2005). Cyclin D expression in chronic lymphocytic leukemia. Leukemia& lymphoma, 46(9), 1275–1285. https://doi.org/10.1080/10428190500158797

Prostate Cancer

1.    Rangel-Pozzo,A., Liu, S., Wajnberg, G., Wang, X., Ouellette, R. J., Hicks, G. G.,Drachenberg, D., & Mai, S. (2020). Genomic Analysis of Localized High-Risk Prostate Cancer Circulating Tumor Cells at the Single-Cell Level. Cells,9(8), 1863. https://doi.org/10.3390/cells9081863

2.    Drachenberg,D., Awe, J. A., Rangel Pozzo, A., Saranchuk, J., & Mai, S. (2019).Advancing Risk Assessment of Intermediate Risk Prostate Cancer Patients. Cancers,11(6), 855. https://doi.org/10.3390/cancers11060855

3.    Wark, L.,Quon, H., Ong, A., Drachenberg, D., Rangel-Pozzo, A., & Mai, S. (2019).Long-Term Dynamics of Three Dimensional Telomere Profiles in Circulating Tumor Cells in High-Risk Prostate Cancer Patients Undergoing Androgen-Deprivation and Radiation Therapy. Cancers, 11(8), 1165. https://doi.org/10.3390/cancers11081165

4.    Awe, J. A.,Saranchuk, J., Drachenberg, D., & Mai, S. (2017). Filtration-based enrichment of circulating tumor cells from all prostate cancer risk groups. Urologic oncology, 35(5), 300–309. https://doi.org/10.1016/j.urolonc.2016.12.008

5.    Wark, L.,Klonisch, T., Awe, J., LeClerc, C., Dyck, B., Quon, H., & Mai, S. (2017).Dynamics of three-dimensional telomere profiles of circulating tumor cells inpatients with high-risk prostate cancer who are undergoing androgen deprivation and radiation therapies. Urologic oncology, 35(3), 112.e1–112.e11. https://doi.org/10.1016/j.urolonc.2016.10.018

6.    Lowes, L.E., Bratman, S. V., Dittamore, R., Done, S., Kelley, S. O., Mai, S., Morin, R.D., Wyatt, A. W., & Allan, A. L. (2016). Circulating Tumor Cells (CTC) and Cell-Free DNA (cfDNA) Workshop 2016: Scientific Opportunities and Logistics for Cancer Clinical Trial Incorporation. International journal of molecular sciences, 17(9), 1505. https://doi.org/10.3390/ijms17091505

7.    Horning, A.M., Awe, J. A., Wang, C. M., Liu, J., Lai, Z., Wang, V. Y., Jadhav, R. R.,Louie, A. D., Lin, C. L., Kroczak, T., Chen, Y., Jin, V. X., Abboud-Werner, S.L., Leach, R. J., Hernandez, J., Thompson, I. M., Saranchuk, J., Drachenberg,D., Chen, C. L., Mai, S., Huang, T. H. (2015). DNA methylation screening of primary prostate tumors identifies SRD5A2 and CYP11A1 as candidate markers for assessing risk of biochemical recurrence. The Prostate, 75(15),1790–1801. https://doi.org/10.1002/pros.23052

8.   Adebayo Awe, J., Xu, M. C., Wechsler, J., Benali-Furet, N.,Cayre, Y. E., Saranchuk, J., Drachenberg, D., & Mai, S. (2013).Three-Dimensional Telomeric Analysis of Isolated Circulating Tumor Cells (CTCs)Defines CTC Subpopulations. Translational oncology, 6(1),51–65. https://doi.org/10.1593/tlo.12361

Breast cancer

1.    Wark, L., Novak, D., Sabbaghian, N., Amrein, L., Jangamreddy,J. R., Cheang, M., Pouchet, C., Aloyz, R., Foulkes, W. D., Mai, S., & Tischkowitz, M. (2013). Heterozygous mutations in the PALB2 hereditary breast cancer predisposition gene impact on the three-dimensional nuclear organization of patient-derived cell lines. Genes, chromosomes & cancer, 52(5),480–494. https://doi.org/10.1002/gcc.22045

2.    Scaltriti,M., Eichhorn, P. J., Cortés, J., Prudkin, L., Aura, C., Jiménez, J.,Chandarlapaty, S., Serra, V., Prat, A., Ibrahim, Y. H., Guzmán, M., Gili, M.,Rodríguez, O., Rodríguez, S., Pérez, J., Green, S. R., Mai, S., Rosen, N.,Hudis, C., & Baselga, J. (2011). Cyclin E amplification/overexpression is a mechanism of trastuzumab resistance in HER2+ breast cancer patients. Proceedings of the National Academy of Sciences of the United States of America,108(9), 3761–3766. https://doi.org/10.1073/pnas.1014835108

3.    Yoshioka, K.I., Kusumoto-Matsuo, R., Matsuno, Y., & Ishiai, M. (2021). Genomic Instability and Cancer Risk Associated with Erroneous DNA Repair. International journal of molecular sciences, 22(22), 12254.

Brain tumors

1.    de OliveiraFM., Montel AM., Dos Santos WG., Neto FS., Junta CM., Lanza Júnior U., S Mai.(2023). Telomere Dynamics, Gene Expression and Genetic Instability in Glioblastoma Cells Treated with Reversine. Journal of Biotechnology and Biomedicine, 06(04). https://doi.org/10.26502/jbb.2642-91280118

2.    Macoura G.,Fortin, E., Fortin, D., & Mai, S. (2023). P056: Three-dimensional nuclear telomere remodeling defines mechanisms of recurrence in glioblastomas. Geneticsin Medicine Open, 1(1), 100075–100075. https://doi.org/10.1016/j.gimo.2023.100075

3.    Gadji, M.,Mathur, S., Bélanger, B., Jangamreddy, J. R., Lamoureux, J., Tsanaclis, A. M.C., Fortin, D., Drouin, R., & Mai, S. (2020). Three-Dimensional Nuclear Telomere Profiling as a Biomarker for Recurrence in Oligodendrogliomas: A Pilot Study. International journal of molecular sciences, 21(22), 8539. https://doi.org/10.3390/ijms21228539

4.    Rangel-Pozzo,A., Kuzyk, A., Gartner, J.G., & Mai, S. (2019). MYCN overexpression is linked to significant differences in nuclear DNA organization in neuroblastoma. SPG BioMed.

5.    Kuzyk, A.,Gartner, J., & Mai, S. (2016). Identification of Neuroblastoma Subgroups Based on Three-Dimensional Telomere Organization. Translational oncology,9(4), 348–356. https://doi.org/10.1016/j.tranon.2016.07.001

6.    Kuzyk, A.,Booth, S., Righolt, C., Mathur, S., Gartner, J., & Mai, S. (2015). MYCN overexpression is associated with unbalanced copy number gain, altered nuclear location, and overexpression of chromosome arm 17q genes in neuro blastoma tumors and cell lines. Genes, chromosomes & cancer, 54(10), 616–628.https://doi.org/10.1002/gcc.22273

7.    Gadji, M.,Crous-Tsanaclis, A. M., Mathieu, D., Mai, S., Fortin, D., & Drouin, R.(2014). A new der(1;7)(q10;p10) leading to a singular 1p loss in a case of glioblastoma with oligodendroglioma component. Neuropathology: official journal of the Japanese Society of Neuropathology, 34(2), 170–178. https://doi.org/10.1111/neup.12060

8.    Gadji, M.,Fortin, D., Tsanaclis, A. M., Garini, Y., Katzir, N., Wienburg, Y., Yan, J.,Klewes, L., Klonisch, T., Drouin, R., & Mai, S. (2010). Three-dimensional nuclear telomere architecture is associated with differential time to progression and overall survival in glioblastoma patients. Neoplasia(New York, N.Y.), 12(2), 183–191. https://doi.org/10.1593/neo.91752

9.    Gadji, M.,Crous, A. M., Fortin, D., Krcek, J., Torchia, M., Mai, S., Drouin, R., &Klonisch, T. (2009). EGF receptor inhibitors in the treatment of glioblastomamultiform: old clinical allies and newly emerging therapeutic concepts. Europeanjournal of pharmacology, 625(1-3), 23–30. https://doi.org/10.1016/j.ejphar.2009.10.010

Esophagus

1.    Sunpaweravong,S., Sunpaweravong, P., Sathitruangsak, C., & Mai, S. (2016).Three-dimensional telomere architecture of esophageal squamous cell carcinoma:comparison of tumor and normal epithelial cells. Diseases of the esophagus:official journal of the International Society for Diseases of the Esophagus,29(4), 307–313. https://doi.org/10.1111/dote.12317

Thyroid

1.    Rangel-Pozzo,A., Dos Santos, F. F., Dettori, T., Giulietti, M., Frau, D. V., Galante, P. A.F., Vanni, R., Pathak, A., Fischer, G., Gartner, J., Caria, P., & Mai, S.(2023). Three-dimensional nuclear architecture distinguishes thyroid cancer histotypes. International journal of cancer, 153(10), 1842–1853. https://doi.org/10.1002/ijc.34667

2.    Rangel-Pozzo,A., Dettori, T., Virginia Frau, D., Etzi, F., Gartner, J., Fisher, G., Vanni,R., Mai, S., & Caria, P. (2021). Three-dimensional telomere profiles in papillary thyroid cancer variants: a pilot study. Bosnian Journal of Basic Medical Sciences, 22(3). https://doi.org/10.17305/bjbms.2021.6639

3.    Luiza S.,Isabel, M., Vaisman, F., Monte, O., Carlos Alberto Longui, Adriano Namo Cury,Freitas, M. O., Rangel-Pozzo, A., Mai, S., & Cerutti, J. M. (2021). AMultifocal Pediatric Papillary Thyroid Carcinoma (PTC) Harboring the AGK-BRAFand RET/PTC3 Fusion in a Mutually Exclusive Pattern Reveals Distinct Levels of Genomic Instability and Nuclear Organization. Biology, 10(2), 125–125. https://doi.org/10.3390/biology10020125

4.    Luiza S.,Maria Isabel C., Vaisman, F., Monte, O., Longui, C., Cury, A. N., Freitas, M.O., Rangel-Pozzo, A., Mai, S., & Cerutti, J. (2020). Abstract 3553:Three-dimensional (3D) telomere signatures of sporadic pediatric papillary thyroid carcinoma (PTC). Cancer Research, 80(16_Supplement), 3553–3553. https://doi.org/10.1158/1538-7445.am2020-3553

5.    Caria, P.,Dettori, T., Frau, D. V., Lichtenzstejn, D., Pani, F., Vanni, R., & Mai, S.(2019). Characterizing the three-dimensional organization of telomeres in papillary thyroid carcinoma cells. Journal of cellular physiology,234(4), 5175–5185. https://doi.org/10.1002/jcp.27321

6.    Wark, L.,Danescu, A., Natarajan, S., Zhu, X., Cheng, S. Y., Hombach-Klonisch, S., Mai,S., & Klonisch, T. (2014). Three-dimensional telomere dynamics in follicular thyroid cancer. Thyroid: official journal of the American Thyroid Association, 24(2), 296–304. https://doi.org/10.1089/thy.2013.0118

7.    Danescu, A.,Herrero Gonzalez, S., Di Cristofano, A., Mai, S., & Hombach-Klonisch, S.(2013). Three-dimensional nuclear telomere architecture changes during endometrial carcinoma development. Genes, chromosomes & cancer,52(8), 716–732. https://doi.org/10.1002/gcc.22067

Gastrointestinal cancer

1.    Rio Frio,T., Lavoie, J., Hamel, N., Geyer, F. C., Kushner, Y. B., Novak, D. J., Wark,L., Capelli, C., Reis-Filho, J. S., Mai, S., Pastinen, T., Tischkowitz, M. D.,Marcus, V. A., & Foulkes, W. D. (2010). Homozygous BUB1B mutation and susceptibility to gastrointestinal neoplasia. The New England journal of medicine, 363(27), 2628–2637. https://doi.org/10.1056/NEJMoa1006565

Melanoma

1.    Rangel-Pozzo,A., Wechsler, J., Groult, J., Laetitia Da Meda, Lebbe, C., & Mai, S.(2022). Telomere-Associated Changes in Nuclear Architecture of Cancer-Associated Macrophage-like Cells in Liquid Biopsies from Melanoma Patients. Biomedicines,10(10), 2391–2391. https://doi.org/10.3390/biomedicines10102391

2.    de Souza, C.F., Xander, P., Monteiro, A. C., Silva, A. G., da Silva, D. C., Mai, S.,Bernardo, V., Lopes, J. D., & Jasiulionis, M. G. (2012). Mining gene expression signature for the detection of pre-malignant melanocytes and early melanomas with risk for metastasis. PloS one, 7(9), e44800. https://doi.org/10.1371/journal.pone.0044800

3.    Silva, A.G., Graves, H. A., Guffei, A., Ricca, T. I., Mortara, R. A., Jasiulionis, M.G., & Mai, S. (2010). Telomere-centromere-driven genomic instability contributes to karyotype evolution in a mouse model of melanoma. Neoplasia(New York, N.Y.), 12(1), 11–19. https://doi.org/10.1593/neo.91004

Cervical cancer

1.    Guijon, F. B., Greulich-Bode, K., Paraskevas, M., Baker, P.,& Mai, S. (2007). Premalignant cervical lesions are characterized by dihydro folate reductase gene amplification and c-Myc overexpression: possible biomarkers. Journal of lower genital tract disease, 11(4),265–272. https://doi.org/10.1097/LGT.0b013e31803c4df0

Alzheimer’s Disease

1.    Garcia, A.,Mathur, S., Kalaw, M. C., McAvoy, E., Anderson, J., Luedke, A., Itorralba, J.,& Mai, S. (2017). Quantitative 3D Telomeric Imaging of Buccal Cells RevealsAlzheimer's Disease-Specific Signatures. Journal of Alzheimer's disease:JAD, 58(1), 139–145. https://doi.org/10.3233/JAD-161169

2.    Garcia, A.,Huang, D., Righolt, A., Righolt, C., Kalaw, M. C., Mathur, S., McAvoy, E.,Anderson, J., Luedke, A., Itorralba, J., & Mai, S. (2017). Super-resolution structure of DNA significantly differs in buccal cells of controls and Alzheimer's patients. Journal of cellular physiology, 232(9), 2387–2395.https://doi.org/10.1002/jcp.25751

3.    Fish, P. V.,Steadman, D., Bayle, E. D., & Whiting, P. (2019). New approaches for the treatment of Alzheimer's disease. Bioorganic & medicinal chemistry letters, 29(2), 125–133. https://doi.org/10.1016/j.bmcl.2018.11.034

4.    Mai S.Editorial: Towards New Approaches in Alzheimer’s Research and Alzheimer’s Disease (2016). Curr Alzheimer Res. 13(7):728-9

5.    Mathur, S.,Glogowska, A., McAvoy, E., Righolt, C., Rutherford, J., Willing, C., Banik, U.,Ruthirakuhan, M., Mai, S., & Garcia, A. (2014). Three-dimensional quantitative imaging of telomeres in buccal cells identifies mild, moderate, and severe Alzheimer's disease patients. Journal of Alzheimer's disease: JAD, 39(1), 35–48. https://doi.org/10.3233/JAD-130866

6.    Rak M.,Gough K., Del Bigio MR., Mai S., Westaway D. In Situ FTIR Spectro microscopy of Brain Tissue from a Transgenic Mouse Model of Alzheimer Disease. Vibrational Spectroscopy 38, 133-141.

Genomic instability & TeloView Technology

1.    Lauriola,A., Pierpaola Davalli, Gaetano Marverti, Caporali, A., Mai, S., & DomenicoD’Arca. (2022). Telomere Dysfunction Is Associated with Altered DNA Organization in Trichoplein/Tchp/Mitostatin (TpMs) Depleted Cells. Biomedicines,10(7), 1602–1602. https://doi.org/10.3390/biomedicines10071602

2.    Freitas, M.O., Santos, Barbosa, L. S., de, F., Pellegrini, S. P., Santos, N. C. K., Paiva,I. S., A Rangel-Pozzo, L Sisdelli, Mai, S., Land, M. G. P., Ribeiro, M. G.,& Ribeiro, M. C. M. (2022). Cellular consequences of small super numerary marker chromosome derived from chromosome 12: mosaicism in daughter and father. Brazilian Journal of Medical and Biological Research, 55. https://doi.org/10.1590/1414-431x2022e12072

3.    Yu, T.,Slone, J., Liu, W., Barnes, R., Opresko, P. L., Wark, L., Mai, S., Horvath, S.,& Huang, T. (2022). Premature aging is associated with higher levels of 8‐oxoguanineand increased DNA damage in the Polg mutator mouse. Aging Cell, 21(9). https://doi.org/10.1111/acel.13669

4.    Rangel-Pozzo,A., Booth, S., Yu, P. L. I., Singh, M., Selivanova, G., & Mai, S. (2020).p53 CRISPR Deletion Affects DNA Structure and Nuclear Architecture. Journalof Clinical Medicine, 9(2), 598. https://doi.org/10.3390/jcm9020598

5.    Szczurek,A., Klewes, L., Xing, J., Gourram, A., Birk, U., Knecht, H., Dobrucki, J. W.,Mai, S., & Cremer, C. (2017). Imaging chromatin nanostructure with binding-activated localization microscopy based on DNA structure fluctuations. Nucleic acids research, 45(8), e56. https://doi.org/10.1093/nar/gkw1301

6.    Rousseau,P., Khondaker, S., Zhu, S., Lauzon, C., Mai, S., & Autexier, C. (2016). An intact putative mouse telomerase essential N-terminal domain is necessary forproper telomere maintenance. Biology of the cell, 108(4), 96–112. https://doi.org/10.1111/boc.201500089

7.    Bronshtein,I., Kepten, E., Kanter, I., Berezin, S., Lindner, M., Redwood, A. B., Mai, S.,Gonzalo, S., Foisner, R., Shav-Tal, Y., & Garini, Y. (2015). Loss of lamin A function increases chromatin dynamics in the nuclear interior. Nature communications, 6, 8044. https://doi.org/10.1038/ncomms9044

8.    Righolt, C.H., Schmälter, A. K., Kuzyk, A., Young, I. T., van Vliet, L. J., & Mai, S.(2015). Measuring murine chromosome orientation in interphase nuclei. Cytometry. Part A: the journal of the International Society for Analytical Cytology,87(8), 733–740. https://doi.org/10.1002/cyto.a.22674

9.    Samassekou,O., Bastien, N., Lichtensztejn, D., Yan, J., Mai, S., & Drouin, R. (2014).Different TP53 mutations are associated with specific chromosomal rearrangements, telomere length changes, and remodeling of the nuclear architecture of telomeres. Genes, chromosomes & cancer, 53(11),934–950. https://doi.org/10.1002/gcc.22205

10. Schmälter,A. K., Kuzyk, A., Righolt, C. H., Neusser, M., Steinlein, O. K., Müller, S.,& Mai, S. (2014). Distinct nuclear orientation patterns for mouse chromosome11 in normal B lymphocytes. BMC cell biology, 15, 22. https://doi.org/10.1186/1471-2121-15-22

11. Mai S.(2013). 3D nuclear organization and genomic instability in cancer. BMC proceedings, 7 (Suppl 2), K17. https://doi.org/10.1186/1753-6561-7-S2-K17

12. Righolt, C.,& Mai, S. (2012). Shattered and stitched chromosomes-chromothripsis and chromoanasynthesis-manifestations of a new chromosome crisis?. Genes, chromosomes & cancer, 51(11), 975–981. https://doi.org/10.1002/gcc.21981

13. Sandhu, S.,Wu, X., Nabi, Z., Rastegar, M., Kung, S., Mai, S., & Ding, H. (2012). Lossof HLTF function promotes intestinal carcinogenesis. Molecular cancer,11, 18. https://doi.org/10.1186/1476-4598-11-18

14. Chen, Q.,Shi, X., Rudolph, C., Yu, Y., Zhang, D., Zhao, X., Mai, S., Wang, G.,Schlegelberger, B., & Shi, Q. (2011). Recurrent trisomy and Robertsonian translocation of chromosome 14 in murine iPS cell lines. Chromosome research:an international journal on the molecular, supramolecular and evolutionary aspects of chromosome biology, 19(7), 857–868. https://doi.org/10.1007/s10577-011-9239-y

15. Gadji, M.,Vallente, R., Klewes, L., Righolt, C., Wark, L., Kongruttanachok, N., Knecht,H., & Mai, S. (2011). Nuclear remodeling as a mechanism for genomic instability in cancer. Advances in cancer research, 112, 77–126. https://doi.org/10.1016/B978-0-12-387688-1.00004-1

16. Dawson, A.J., Bal, S., McTavish, B., Tomiuk, M., Schroedter, I., Ahsanuddin, A. N.,Seftel, M. D., Vallente, R., Mai, S., Cotter, P. D., Hovanes, K., Gorre, M.,& Gunn, S. R. (2011). Inversion and deletion of 16q22 defined by array CGH,FISH, and RT-PCR in a patient with AML. Cancer genetics, 204(6),344–347. https://doi.org/10.1016/j.cancergen.2011.05.005

17. Righolt, C.H., Wiener, F., Taylor-Kashton, C., Harizanova, J., Vermolen, B. J., Garini,Y., Young, I. T., & Mai, S. (2011). Translocation frequencies andchromosomal proximities for selected mouse chromosomes in primary Blymphocytes. Cytometry. Part A: the journal of the International Societyfor Analytical Cytology, 79(4), 276–283. https://doi.org/10.1002/cyto.a.21038

18. Klewes, L.,Höbsch, C., Katzir, N., Rourke, D., Garini, Y., & Mai, S. (2011). Novelautomated three-dimensional genome scanning based on the nuclear architecture of telomeres. Cytometry. Part A : the journal of the International Society for Analytical Cytology, 79(2), 159–166. https://doi.org/10.1002/cyto.a.21012

19. Dawson, A.J., Yanofsky, R., Vallente, R., Bal, S., Schroedter, I., Liang, L., & Mai,S. (2011). Array comparative genomic hybridization and cytogenetic analysis in pediatric acute leukemias. Current oncology (Toronto, Ont.), 18(5),e210–e217. https://doi.org/10.3747/co.v18i5.770

20. Klonisch,T., Wark, L., Hombach-Klonisch, S., & Mai, S. (2010). Nuclear imaging in three dimensions: a unique tool in cancer research. Annals of anatomy,192(5), 292–301. https://doi.org/10.1016/j.aanat.2010.07.007

21. Millau, J. F., Mai, S., Bastien, N., & Drouin, R. (2010). p53functions and cell lines: have we learned the lessons from the past?. Bio Essays: news and reviews in molecular, cellular and developmental biology, 32(5), 392–400. https://doi.org/10.1002/bies.200900160

22. Mai S.(2010). Initiation of telomere-mediated chromosomal rearrangements in cancer. Journalof cellular biochemistry, 109(6), 1095–1102. https://doi.org/10.1002/jcb.22501

23. Lacoste, S.,Wiechec, E., Dos Santos Silva, A. G., Guffei, A., Williams, G., Lowbeer, M.,Benedek, K., Henriksson, M., Klein, G., & Mai, S. (2010). Chromosomal rearrangements after ex vivo Epstein-Barr virus (EBV) infection of human B cells. Oncogene, 29(4), 503–515. https://doi.org/10.1038/onc.2009.359

24. Davie, J.R., Drobic, B., Perez-Cadahia, B., He, S., Espino, P. S., Sun, J. M., Chen, H.Y., Dunn, K. L., Wark, L., Mai, S., Khan, D. H., Davie, S. N., Lu, S., Peltier,C. P., & Delcuve, G. P. (2010). Nucleosomal response, immediate-early gene expression and cell transformation. Advances in enzyme regulation,50(1), 135–145. https://doi.org/10.1016/j.advenzreg.2009.10.008

25. Gonzalez-Suarez,I., Redwood, A. B., Perkins, S. M., Vermolen, B., Lichtensztejin, D., Grotsky,D. A., Morgado-Palacin, L., Gapud, E. J., Sleckman, B. P., Sullivan, T., Sage,J., Stewart, C. L., Mai, S., & Gonzalo, S. (2009). Novel roles for A-type lamins in telomere biology and the DNA damage response pathway. The EMBO journal, 28(16), 2414–2427. https://doi.org/10.1038/emboj.2009.196

26. Bronstein,I., Israel, Y., Kepten, E., Mai, S., Shav-Tal, Y., Barkai, E., & Garini, Y.(2009). Transient anomalous diffusion of telomeres in the nucleus of mammalian cells. Physical review letters, 103(1), 018102. https://doi.org/10.1103/PhysRevLett.103.018102

27. Dunn, K. L.,He, S., Wark, L., Delcuve, G. P., Sun, J. M., Yu Chen, H., Mai, S., &Davie, J. R. (2009). Increased genomic instability and altered chromosoma lprotein phosphorylation timing in HRAS-transformed mouse fibroblasts. Genes, chromosomes & cancer, 48(5), 397–409. https://doi.org/10.1002/gcc.20649

28. GonçalvesDos Santos Silva, A., Sarkar, R., Harizanova, J., Guffei, A., Mowat, M.,Garini, Y., & Mai, S. (2008). Centromeres in cell division, evolution, nuclear organization and disease. Journal of cellular biochemistry,104(6), 2040–2058. https://doi.org/10.1002/jcb.21766

29. Guffei, A.,Lichtensztejn, Z., Gonçalves Dos Santos Silva, A., Louis, S. F., Caporali, A.,& Mai, S. (2007). c-Myc-dependent formation of Robertsonian translocationchromosomes in mouse cells. Neoplasia (New York, N.Y.), 9(7), 578–588. https://doi.org/10.1593/neo.07355

30. Zakharenko,L. P., Kovalenko, L. V., & Mai, S. (2007). Fluorescence in situ hybridization analysis of hobo, mdg1 and Dm412 transposable elements reveals genomic instability following the Drosophila melanogaster genome sequencing. Heredity,99(5), 525–530. https://doi.org/10.1038/sj.hdy.6801029

31. Sarkar, R.,Guffei, A., Vermolen, B. J., Garini, Y., & Mai, S. (2007). Alterations of centromere positions in nuclei of immortalized and malignant mouse lymphocytes. Cytometry. Part A : the journal of the International Society for Analytical Cytology, 71(6), 386–392. https://doi.org/10.1002/cyto.a.20395

32. Caporali,A., Wark, L., Vermolen, B. J., Garini, Y., & Mai, S. (2007). Telomeric aggregates and end-to-end chromosomal fusions require myc box II. Oncogene,26(10), 1398–1406. https://doi.org/10.1038/sj.onc.1209928

33. Mai, S.,& Imreh, S. (2007). Non-random genomic instability in cancer: a fact, not an illusion. Seminars in cancer biology, 17(1), 1–4. https://doi.org/10.1016/j.semcancer.2006.11.002

34. Kuttler, F.,& Mai, S. (2007). Formation of non-random extrachromosomal elements during development, differentiation and oncogenesis. Seminars in cancer biology,17(1), 56–64. https://doi.org/10.1016/j.semcancer.2006.10.007

35. Mai, S.,& Garini, Y. (2006). The significance of telomeric aggregates in the interphase nuclei of tumor cells. Journal of cellular biochemistry,97(5), 904–915. https://doi.org/10.1002/jcb.20760

36. Mai, S.,& Garini, Y. (2005). Oncogenic remodeling of the three-dimensional organization of the interphase nucleus: c-Myc induces telomeric aggregates whose formation precedes chromosomal rearrangements. Cell cycle(Georgetown, Tex.), 4(10), 1327–1331. https://doi.org/10.4161/cc.4.10.2082

37. Vermolen, B.J., Garini, Y., Mai, S., Mougey, V., Fest, T., Chuang, T. C., Chuang, A. Y.,Wark, L., & Young, I. T. (2005). Characterizing the three-dimensional organization of telomeres. Cytometry. Part A : the journal of the International Society for Analytical Cytology, 67(2), 144–150. https://doi.org/10.1002/cyto.a.20159

38. Louis, S.F., Vermolen, B. J., Garini, Y., Young, I. T., Guffei, A., Lichtensztejn, Z.,Kuttler, F., Chuang, T. C., Moshir, S., Mougey, V., Chuang, A. Y., Kerr, P. D.,Fest, T., Boukamp, P., & Mai, S. (2005). c-Myc induces chromosomal rearrangements through telomere and chromosome remodeling in the interphase nucleus. Proceedings of the National Academy of Sciences of the UnitedStates of America, 102(27), 9613–9618. https://doi.org/10.1073/pnas.0407512102

39. Fest, T.,Guffei, A., Williams, G., Silva, S., & Mai, S. (2005). Uncoupling of genomic instability and tumorigenesis in a mouse model of Burkitt's lymphoma expressing a conditional box II-deleted Myc protein. Oncogene, 24(18),2944–2953. https://doi.org/10.1038/sj.onc.1208467

40. Ermler, S.,Krunic, D., Knoch, T. A., Moshir, S., Mai, S., Greulich-Bode, K. M., & Boukamp, P. (2004). Cell cycle-dependent 3D distribution of telomeres and telomere repeat-binding factor 2 (TRF2) in HaCaT and HaCaT-myc cells. Europeanjournal of cell biology, 83(11-12), 681–690. https://doi.org/10.1078/0171-9335-00430

41. Louis, S.,Benedek, K., Mowat, M., Klein, G., & Mai, S. (2004). Elongated mouse chromosomes suitable for enhanced molecular cytogenetics. Cytotechnology,44(3), 143–149. https://doi.org/10.1007/s10616-004-2978-2

42. Benedek, K.,Chudoba, I., Klein, G., Wiener, F., & Mai, S. (2004). Rearrangements of thetelomeric region of mouse chromosome 11 in Pre-B ABL/MYC cells revealed bymBANDing, spectral karyotyping, and fluorescence in-situ hybridization with a subtelomeric probe. Chromosome research, 12(8), 777–785. https://doi.org/10.1007/s10577-005-5264-z

43. Chuang, T.C., Moshir, S., Garini, Y., Chuang, A. Y., Young, I. T., Vermolen, B., van den Doel, R., Mougey, V., Perrin, M., Braun, M., Kerr, P. D., Fest, T., Boukamp,P., & Mai, S. (2004). The three-dimensional organization of telomeres in the nucleus of mammalian cells. BMC biology, 2, 12. https://doi.org/10.1186/1741-7007-2-12

Smoldering Myeloma and Multiple Myeloma

1.    Kumar, S., Rajkumar, S. V., Jevremovic,
D., Kyle, R. A., Shifrin, Y., Nguyen, M., Husain,
Z., Alikhah, A., Jafari, A., Mai, S., Anderson,
K., & Louis, S. (2024). Three‐dimensional telomere profiling predicts risk of progression in smoldering multiple myeloma. American Journal of Hematology. https://doi.org/10.1002/ajh.27364

2.    Louis, S.,Mai, S., & Knecht, H. (2023). The 3D- Telomere Profiling Assay Identifies High Risk Smoldering Multiple Myeloma Patients with High Precision. Blood,142(Supplement 1), 3362–3362. https://doi.org/10.1182/blood-2023-18006

3.    Kumar, S.,Rajkumar, V., Jevremovic D., Kyle, R., Mai, S., & Louis, S. (2023). P975:Three-Dimensional Telomere Profiling Predicts Risk Of Relapse In Newly Diagnosed Multiple Myeloma Patients. HemaSphere, 7(S3), e07945f9–e07945f9. https://doi.org/10.1097/01.hs9.0000970804.07945.f9

4.    Kumar, S.,S. Vincent Rajkumar, Jevremovic D, Kyle, R. A., Mai, S., & Louis, S.(2023). Three-dimensional telomere profiling to predict risk of progression in smoldering multiple myeloma. Journal of Clinical Oncology, 41(16_suppl),8056–8056. https://doi.org/10.1200/jco.2023.41.16_suppl.8056

5.    Rangel-Pozzo,A., Yu, I., Lal, S., Asbaghi, Y., Luiza Sisdelli, Tammur P., Tamm, A., Punab,M., Klewes L., Louis, S., Knecht, H., Olujohungbe, A. & Mai, S. (2021).Telomere Architecture Correlates with Aggressiveness in Multiple Myeloma. Cancers,13(8), 1969–1969. https://doi.org/10.3390/cancers13081969

6.    Louis, S.,Rangel-Pozzo, A., Knecht, H., & Mai, S. (2020). Three-Dimensional Telomere Analysis Using Teloview® Technology Identifies Smouldering Myeloma Patients with High Risk of Progression to Full Stage Multiple Myeloma in a Proof of Concept Cohort. Blood, 136(Supplement 1), 19–20. https://doi.org/10.1182/blood-2020-140612

7.    Ivan Yu, P.L., Wang, Y., Tammur, M., Tamm, A., Punab, M., Rangel-Pozzo, A., & Mai, S.(2019). Distinct Nuclear Organization of Telomere sand Centromeres in Monoclonal Gammopathy of Undetermined Significance and Multiple Myeloma. Cells,8(7), 723. https://doi.org/10.3390/cells8070723

8.    Sathitruangsak, C., Righolt, C. H., Klewes, L., Tung Chang,D., Kotb, R., & Mai, S. (2017). Distinct and shared three-dimensional chromosome organization patterns in lymphocytes, monoclonal gammopathy of undetermined significance and multiple myeloma. International journal of cancer, 140(2), 400–410. https://doi.org/10.1002/ijc.30461

9.    Taylor-Kashton,C., Lichtensztejn, D., Baloglu, E., Senapedis, W., Shacham, S., Kauffman, M.G., Kotb, R., & Mai, S. (2016). XPO1 Inhibition Preferentially Disrupts the3D Nuclear Organization of Telomeres in Tumor Cells. Journal of cellular physiology, 231(12), 2711–2719. https://doi.org/10.1002/jcp.25378

10.    Martin, L.D., Harizanova, J., Mai, S., Belch, A. R., & Pilarski, L. M. (2016). FGFR3preferentially colocalizes with IGH in the interphase nucleus of multiple myeloma patient B-cells when FGFR3 is located outside of CT4. Genes, chromosomes & cancer, 55(12), 962–974. https://doi.org/10.1002/gcc.22394

11. Martin, L.D., Harizanova, J., Mai, S., Belch, A. R., & Pilarski, L. M. (2016). FGFR3preferentially colocalizes with IGH in the interphase nucleus of multiple myeloma patient B-cells when FGFR3 is located outside of CT4. Genes, chromosomes & cancer, 55(12), 962–974. https://doi.org/10.1002/gcc.22394

12. Sathitruangsak,C., Righolt, C. H., Klewes, L., Tammur, P., Ilus, T., Tamm, A., Punab, M.,Olujohungbe, A., & Mai, S. (2015). Quantitative super resolution microscopy reveals differences in nuclear DNA organization of multiple myeloma and monoclonal gammopathy of undetermined significance. Journal of cellular biochemistry, 116(5), 704–710. https://doi.org/10.1002/jcb.25030

13. Klewes, L.,Vallente, R., Dupas, E., Brand, C., Grün, D., Guffei, A., Sathitruangsak, C.,Awe, J. A., Kuzyk, A., Lichtensztejn, D., Tammur, P., Ilus, T., Tamm, A.,Punab, M., Rubinger, M., Olujohungbe, A., & Mai, S. (2013).Three-dimensional Nuclear Telomere Organization in Multiple Myeloma. Translational oncology, 6(6), 749–756. https://doi.org/10.1593/tlo.13613

14. Martin, L.D., Harizanova, J., Righolt, C. H., Zhu, G., Mai, S., Belch, A. R., &Pilarski, L. M. (2013). Differential nuclear organization of translocation-prone genes in nonmalignant B cells from patients with t(14;16) as compared with t(4;14) or t(11;14) myeloma. Genes, Chromosomes & Cancer, 52(6),523–537. https://doi.org/10.1002/gcc.22049


Hodgkin’s Lymphoma

1.   Knecht, H., Johnson, N., Bienz, M.N., Brousset, P., Memeo, L., Shifrin, Y., Alikhah, A., Louis, S.F., & Mai, S. (2024). Analysis by TeloView® Technology Predicts the Response of Hodgkin’s Lymphoma to First-Line ABVD Therapy. Cancers 16, 2816. https://doi.org/10.3390/cancers16162816

2.    Louis, S.,Johnson, N. A., Brousset, P., Ludkovski, O., Shifrin, Y., Mai, S., &Knecht, H. (2020). Three-Dimensional Telomere Analysis Using Teloview® Technology Predicts the Response of Classic Hodgkin’s Lymphoma Patients to First Line Therapy at Point of Diagnosis. Blood, 136(Supplement 1),36–37. https://doi.org/10.1182/blood-2020-140624

3.    Contu, F.,Rangel-Pozzo, A., Trokajlo, P., Wark, L., Klewes, L., Johnson, N. A.,Petrogiannis-Haliotis, T., Gartner, J. G., Garini, Y., Vanni, R., Knecht, H.,& Mai, S. (2018). Distinct 3D Structural Patterns of Lamin A/C Expression in Hodgkin and Reed-Sternberg Cells. Cancers, 10(9), 286. https://doi.org/10.3390/cancers10090286

4.    Knecht, H.,Johnson, N. A., Haliotis, T., Lichtensztejn, D., & Mai, S. (2017).Disruption of direct 3D telomere-TRF2 interaction through two molecularly disparate mechanisms is a hallmark of primary Hodgkin and Reed-Sternberg cells. Laboratory investigation; a journal of technical methods and pathology,97(7), 772–781. https://doi.org/10.1038/labinvest.2017.33

5.    Knecht, H.,& Mai, S. (2017). The Use of 3D Telomere FISH for the Characterization of the Nuclear Architecture in EBV-Positive Hodgkin's Lymphoma. Methods in molecular biology, 1532, 93–104. https://doi.org/10.1007/978-1-4939-6655-4_6

6.    Righolt, C.H., Knecht, H., & Mai, S. (2016). DNA Super resolution Structure of Reed-Sternberg Cells Differs Between Long-Lasting Remission Versus Relapsing Hodgkin's Lymphoma Patients. Journal of cellular biochemistry, 117(7),1633–1637. https://doi.org/10.1002/jcb.25456

7.    Lajoie, V.,Lemieux, B., Sawan, B., Lichtensztejn, D., Lichtensztejn, Z., Wellinger, R.,Mai, S., & Knecht, H. (2015). LMP1 mediates multinuclearity through down regulation of shelterin proteins and formation of telomeric aggregates. Blood,125(13), 2101–2110. https://doi.org/10.1182/blood-2014-08-594176

8.    Kongruttanachok,N., Cayre, Y. E., Knecht, H., & Mai, S. (2014). Rapid separation of mononuclear hodgkin from multinuclear reed-sternberg cells. Laboratory hematology:official publication of the International Society for Laboratory Hematology,20(1), 2–6. https://doi.org/10.1532/LH96.12023

9.    Righolt, C.H., Guffei, A., Knecht, H., Young, I. T., Stallinga, S., van Vliet, L. J.,& Mai, S. (2014). Differences in nuclear DNA organization between lymphocytes, Hodgkin and Reed-Sternberg cells revealed by structured illumination microscopy. Journal of cellular biochemistry, 115(8),1441–1448. https://doi.org/10.1002/jcb.24800

10. Knecht, H.,Righolt, C., & Mai, S. (2013). Genomic Instability: The Driving Force behind Refractory/Relapsing Hodgkin's Lymphoma. Cancers, 5(2), 714–725. https://doi.org/10.3390/cancers5020714

11. Knecht, H.,Kongruttanachok, N., Sawan, B., Brossard, J., Prévost, S., Turcotte, E.,Lichtensztejn, Z., Lichtensztejn, D., & Mai, S. (2012). Three-dimensional Telomere Signatures of Hodgkin- and Reed-Sternberg Cells at Diagnosis Identify Patients with Poor Response to Conventional Chemotherapy. Translational oncology, 5(4), 269–277. https://doi.org/10.1593/tlo.12142

12. Knecht, H.,& Mai, S. (2011). 3D imaging of telomeres and nuclear architecture: An emerging tool of 3D nano-morphology-based diagnosis. Journal of cellular physiology, 226(4), 859–867. https://doi.org/10.1002/jcp.22425

13. Knecht, H.,Brüderlein, S., Wegener, S., Lichtensztejn, D., Lichtensztejn, Z., Lemieux, B.,Möller, P., & Mai, S. (2010). 3D nuclear organization of telomeres in the Hodgkin cell lines U-HO1 and U-HO1-PTPN1: PTPN1 expression prevents the formation of very short telomeres including "t-stumps". BMC cell biology, 11, 99. https://doi.org/10.1186/1471-2121-11-99

14. Guffei, A.,Sarkar, R., Klewes, L., Righolt, C., Knecht, H., & Mai, S. (2010). Dynamic chromosomal rearrangements in Hodgkin's lymphoma are due to on going three-dimensional nuclear remodeling and breakage-bridge-fusion cycles. Haematologica,95(12), 2038–2046. https://doi.org/10.3324/haematol.2010.030171

15. Knecht, H.,Brüderlein, S., Mai, S., Möller, P., & Sawan, B. (2010). 3D structural and functional characterization of the transition from Hodgkin to Reed-Sternberg cells. Annals of anatomy, 192(5), 302–308. https://doi.org/10.1016/j.aanat.2010.07.006

16. Knecht, H.,Sawan, B., Lichtensztejn, Z., Lichtensztejn, D., & Mai, S. (2010). 3DTelomere FISH defines LMP1-expressing Reed-Sternberg cells as end-stage cells with telomere-poor 'ghost' nuclei and very short telomeres. Laboratory investigation; a journal of technical methods and pathology, 90(4),611–619. https://doi.org/10.1038/labinvest.2010.2

17. Knecht, H.,Sawan, B., Lichtensztejn, D., Lemieux, B., Wellinger, R. J., & Mai, S.(2009). The 3D nuclear organization of telomeres marks the transition from Hodgkin to Reed-Sternberg cells. Leukemia, 23(3), 565–573. https://doi.org/10.1038/leu.2008.314.

18. Knecht H, Petrogiannis-Haliotis T, Louis S, Mai S . (2024). 3D-Q-FISH/Telomere/TRF2 Nanotechnology Identifies a Progressively Disturbed Telomere/Shelterin/Lamin AC Complex as the Common Pathogenic, Molecular/Spatial Denominator of Classical Hodgkin Lymphoma. Cells 13(21), 1748. https://doi.org/10.3390/cells13211748

Plasmacytoma

1.   Schmälter, A. K., Righolt, C. H., Kuzyk, A., & Mai, S.(2015). Changes in Nuclear Orientation Patterns of Chromosome 11 during Mouse Plasmacytoma Development. Translational oncology, 8(5),417–423. https://doi.org/10.1016/j.tranon.2015.09.001

2.    Kuzyk, A.,& Mai, S. (2012). Selected telomere length changes and aberrant three-dimensional nuclear telomere organization during fast-onset mouse plasmacytomas. Neoplasia (New York, N.Y.), 14(4), 344–351. https://doi.org/10.1593/neo.12446

3.    Wiener, F., Schmälter, A. K., Mowat, M. R., & Mai, S.(2010). Duplication of Subcytoband 11E2 of Chromosome 11 Is Regularly Associated with Accelerated Tumor Development in v-abl/myc-Induced Mouse Plasmacytomas. Genes & cancer, 1(8), 847–858. https://doi.org/10.1177/1947601910382897 (journal cover)

Myelodysplastic syndromes/acute myeloid leukemia

1.    Rangel-Pozzo,A., Corrêa de Souza, D., Schmid-Braz, A. T., de Azambuja, A. P., Ferraz-Aguiar,T., Borgonovo, T., & Mai, S. (2019). 3D Telomere Structure Analysis to Detect Genomic Instability and Cytogenetic Evolution in Myelodysplastic Syndromes. Cells, 8(4), 304. https://doi.org/10.3390/cells8040304

2.    Gadji, M.,Adebayo Awe, J., Rodrigues, P., Kumar, R., Houston, D. S., Klewes, L., Dièye,T. N., Rego, E. M., Passetto, R. F., de Oliveira, F. M., & Mai, S. (2012).Profiling three-dimensional nuclear telomeric architecture of myelodysplastic syndromes and acute myeloid leukemia defines patient subgroups. Clinical cancer research: an official journal of the American Association for Cancer Research, 18(12), 3293–3304. https://doi.org/10.1158/1078-0432.CCR-12-0087

Leukemia

1.    De Oliveira,F. M., Jamur, V. R., Merfort, L. W., Pozzo, A. R., & Mai, S. (2022).Three-dimensional nuclear telomere architecture and differential expression of aurora kinase genes in chronic myeloid leukemia to measure cell transformation. BMC Cancer, 22(1). https://doi.org/10.1186/s12885-022-10094-5

2.    Samassekou,O., Hébert, J., Mai, S., & Yan, J. (2013). Nuclear remodeling of telomeres in chronic myeloid leukemia. Genes, chromosomes & cancer, 52(5),495–502. https://doi.org/10.1002/gcc.22046

3.    Paul, J. T.,Henson, E. S., Mai, S., Mushinski, F. J., Cheang, M., Gibson, S. B., &Johnston, J. B. (2005). Cyclin D expression in chronic lymphocytic leukemia. Leukemia& lymphoma, 46(9), 1275–1285. https://doi.org/10.1080/10428190500158797

Prostate Cancer

1.    Rangel-Pozzo,A., Liu, S., Wajnberg, G., Wang, X., Ouellette, R. J., Hicks, G. G.,Drachenberg, D., & Mai, S. (2020). Genomic Analysis of Localized High-Risk Prostate Cancer Circulating Tumor Cells at the Single-Cell Level. Cells,9(8), 1863. https://doi.org/10.3390/cells9081863

2.    Drachenberg,D., Awe, J. A., Rangel Pozzo, A., Saranchuk, J., & Mai, S. (2019).Advancing Risk Assessment of Intermediate Risk Prostate Cancer Patients. Cancers,11(6), 855. https://doi.org/10.3390/cancers11060855

3.    Wark, L.,Quon, H., Ong, A., Drachenberg, D., Rangel-Pozzo, A., & Mai, S. (2019).Long-Term Dynamics of Three Dimensional Telomere Profiles in Circulating Tumor Cells in High-Risk Prostate Cancer Patients Undergoing Androgen-Deprivation and Radiation Therapy. Cancers, 11(8), 1165. https://doi.org/10.3390/cancers11081165

4.    Awe, J. A.,Saranchuk, J., Drachenberg, D., & Mai, S. (2017). Filtration-based enrichment of circulating tumor cells from all prostate cancer risk groups. Urologic oncology, 35(5), 300–309. https://doi.org/10.1016/j.urolonc.2016.12.008

5.    Wark, L.,Klonisch, T., Awe, J., LeClerc, C., Dyck, B., Quon, H., & Mai, S. (2017).Dynamics of three-dimensional telomere profiles of circulating tumor cells inpatients with high-risk prostate cancer who are undergoing androgen deprivation and radiation therapies. Urologic oncology, 35(3), 112.e1–112.e11. https://doi.org/10.1016/j.urolonc.2016.10.018

6.    Lowes, L.E., Bratman, S. V., Dittamore, R., Done, S., Kelley, S. O., Mai, S., Morin, R.D., Wyatt, A. W., & Allan, A. L. (2016). Circulating Tumor Cells (CTC) and Cell-Free DNA (cfDNA) Workshop 2016: Scientific Opportunities and Logistics for Cancer Clinical Trial Incorporation. International journal of molecular sciences, 17(9), 1505. https://doi.org/10.3390/ijms17091505

7.    Horning, A.M., Awe, J. A., Wang, C. M., Liu, J., Lai, Z., Wang, V. Y., Jadhav, R. R.,Louie, A. D., Lin, C. L., Kroczak, T., Chen, Y., Jin, V. X., Abboud-Werner, S.L., Leach, R. J., Hernandez, J., Thompson, I. M., Saranchuk, J., Drachenberg,D., Chen, C. L., Mai, S., Huang, T. H. (2015). DNA methylation screening of primary prostate tumors identifies SRD5A2 and CYP11A1 as candidate markers for assessing risk of biochemical recurrence. The Prostate, 75(15),1790–1801. https://doi.org/10.1002/pros.23052

8.   Adebayo Awe, J., Xu, M. C., Wechsler, J., Benali-Furet, N.,Cayre, Y. E., Saranchuk, J., Drachenberg, D., & Mai, S. (2013).Three-Dimensional Telomeric Analysis of Isolated Circulating Tumor Cells (CTCs)Defines CTC Subpopulations. Translational oncology, 6(1),51–65. https://doi.org/10.1593/tlo.12361

Breast cancer

1.    Wark, L., Novak, D., Sabbaghian, N., Amrein, L., Jangamreddy,J. R., Cheang, M., Pouchet, C., Aloyz, R., Foulkes, W. D., Mai, S., & Tischkowitz, M. (2013). Heterozygous mutations in the PALB2 hereditary breast cancer predisposition gene impact on the three-dimensional nuclear organization of patient-derived cell lines. Genes, chromosomes & cancer, 52(5),480–494. https://doi.org/10.1002/gcc.22045

2.    Scaltriti,M., Eichhorn, P. J., Cortés, J., Prudkin, L., Aura, C., Jiménez, J.,Chandarlapaty, S., Serra, V., Prat, A., Ibrahim, Y. H., Guzmán, M., Gili, M.,Rodríguez, O., Rodríguez, S., Pérez, J., Green, S. R., Mai, S., Rosen, N.,Hudis, C., & Baselga, J. (2011). Cyclin E amplification/overexpression is a mechanism of trastuzumab resistance in HER2+ breast cancer patients. Proceedings of the National Academy of Sciences of the United States of America,108(9), 3761–3766. https://doi.org/10.1073/pnas.1014835108

3.    Yoshioka, K.I., Kusumoto-Matsuo, R., Matsuno, Y., & Ishiai, M. (2021). Genomic Instability and Cancer Risk Associated with Erroneous DNA Repair. International journal of molecular sciences, 22(22), 12254.

Brain tumors

1.    de OliveiraFM., Montel AM., Dos Santos WG., Neto FS., Junta CM., Lanza Júnior U., S Mai.(2023). Telomere Dynamics, Gene Expression and Genetic Instability in Glioblastoma Cells Treated with Reversine. Journal of Biotechnology and Biomedicine, 06(04). https://doi.org/10.26502/jbb.2642-91280118

2.    Macoura G.,Fortin, E., Fortin, D., & Mai, S. (2023). P056: Three-dimensional nuclear telomere remodeling defines mechanisms of recurrence in glioblastomas. Geneticsin Medicine Open, 1(1), 100075–100075. https://doi.org/10.1016/j.gimo.2023.100075

3.    Gadji, M.,Mathur, S., Bélanger, B., Jangamreddy, J. R., Lamoureux, J., Tsanaclis, A. M.C., Fortin, D., Drouin, R., & Mai, S. (2020). Three-Dimensional Nuclear Telomere Profiling as a Biomarker for Recurrence in Oligodendrogliomas: A Pilot Study. International journal of molecular sciences, 21(22), 8539. https://doi.org/10.3390/ijms21228539

4.    Rangel-Pozzo,A., Kuzyk, A., Gartner, J.G., & Mai, S. (2019). MYCN overexpression is linked to significant differences in nuclear DNA organization in neuroblastoma. SPG BioMed.

5.    Kuzyk, A.,Gartner, J., & Mai, S. (2016). Identification of Neuroblastoma Subgroups Based on Three-Dimensional Telomere Organization. Translational oncology,9(4), 348–356. https://doi.org/10.1016/j.tranon.2016.07.001

6.    Kuzyk, A.,Booth, S., Righolt, C., Mathur, S., Gartner, J., & Mai, S. (2015). MYCN overexpression is associated with unbalanced copy number gain, altered nuclear location, and overexpression of chromosome arm 17q genes in neuro blastoma tumors and cell lines. Genes, chromosomes & cancer, 54(10), 616–628.https://doi.org/10.1002/gcc.22273

7.    Gadji, M.,Crous-Tsanaclis, A. M., Mathieu, D., Mai, S., Fortin, D., & Drouin, R.(2014). A new der(1;7)(q10;p10) leading to a singular 1p loss in a case of glioblastoma with oligodendroglioma component. Neuropathology: official journal of the Japanese Society of Neuropathology, 34(2), 170–178. https://doi.org/10.1111/neup.12060

8.    Gadji, M.,Fortin, D., Tsanaclis, A. M., Garini, Y., Katzir, N., Wienburg, Y., Yan, J.,Klewes, L., Klonisch, T., Drouin, R., & Mai, S. (2010). Three-dimensional nuclear telomere architecture is associated with differential time to progression and overall survival in glioblastoma patients. Neoplasia(New York, N.Y.), 12(2), 183–191. https://doi.org/10.1593/neo.91752

9.    Gadji, M.,Crous, A. M., Fortin, D., Krcek, J., Torchia, M., Mai, S., Drouin, R., &Klonisch, T. (2009). EGF receptor inhibitors in the treatment of glioblastomamultiform: old clinical allies and newly emerging therapeutic concepts. Europeanjournal of pharmacology, 625(1-3), 23–30. https://doi.org/10.1016/j.ejphar.2009.10.010

Esophagus

1.    Sunpaweravong,S., Sunpaweravong, P., Sathitruangsak, C., & Mai, S. (2016).Three-dimensional telomere architecture of esophageal squamous cell carcinoma:comparison of tumor and normal epithelial cells. Diseases of the esophagus:official journal of the International Society for Diseases of the Esophagus,29(4), 307–313. https://doi.org/10.1111/dote.12317

Thyroid

1.    Rangel-Pozzo,A., Dos Santos, F. F., Dettori, T., Giulietti, M., Frau, D. V., Galante, P. A.F., Vanni, R., Pathak, A., Fischer, G., Gartner, J., Caria, P., & Mai, S.(2023). Three-dimensional nuclear architecture distinguishes thyroid cancer histotypes. International journal of cancer, 153(10), 1842–1853. https://doi.org/10.1002/ijc.34667

2.    Rangel-Pozzo,A., Dettori, T., Virginia Frau, D., Etzi, F., Gartner, J., Fisher, G., Vanni,R., Mai, S., & Caria, P. (2021). Three-dimensional telomere profiles in papillary thyroid cancer variants: a pilot study. Bosnian Journal of Basic Medical Sciences, 22(3). https://doi.org/10.17305/bjbms.2021.6639

3.    Luiza S.,Isabel, M., Vaisman, F., Monte, O., Carlos Alberto Longui, Adriano Namo Cury,Freitas, M. O., Rangel-Pozzo, A., Mai, S., & Cerutti, J. M. (2021). AMultifocal Pediatric Papillary Thyroid Carcinoma (PTC) Harboring the AGK-BRAFand RET/PTC3 Fusion in a Mutually Exclusive Pattern Reveals Distinct Levels of Genomic Instability and Nuclear Organization. Biology, 10(2), 125–125. https://doi.org/10.3390/biology10020125

4.    Luiza S.,Maria Isabel C., Vaisman, F., Monte, O., Longui, C., Cury, A. N., Freitas, M.O., Rangel-Pozzo, A., Mai, S., & Cerutti, J. (2020). Abstract 3553:Three-dimensional (3D) telomere signatures of sporadic pediatric papillary thyroid carcinoma (PTC). Cancer Research, 80(16_Supplement), 3553–3553. https://doi.org/10.1158/1538-7445.am2020-3553

5.    Caria, P.,Dettori, T., Frau, D. V., Lichtenzstejn, D., Pani, F., Vanni, R., & Mai, S.(2019). Characterizing the three-dimensional organization of telomeres in papillary thyroid carcinoma cells. Journal of cellular physiology,234(4), 5175–5185. https://doi.org/10.1002/jcp.27321

6.    Wark, L.,Danescu, A., Natarajan, S., Zhu, X., Cheng, S. Y., Hombach-Klonisch, S., Mai,S., & Klonisch, T. (2014). Three-dimensional telomere dynamics in follicular thyroid cancer. Thyroid: official journal of the American Thyroid Association, 24(2), 296–304. https://doi.org/10.1089/thy.2013.0118

7.    Danescu, A.,Herrero Gonzalez, S., Di Cristofano, A., Mai, S., & Hombach-Klonisch, S.(2013). Three-dimensional nuclear telomere architecture changes during endometrial carcinoma development. Genes, chromosomes & cancer,52(8), 716–732. https://doi.org/10.1002/gcc.22067

Gastrointestinal cancer

1.    Rio Frio,T., Lavoie, J., Hamel, N., Geyer, F. C., Kushner, Y. B., Novak, D. J., Wark,L., Capelli, C., Reis-Filho, J. S., Mai, S., Pastinen, T., Tischkowitz, M. D.,Marcus, V. A., & Foulkes, W. D. (2010). Homozygous BUB1B mutation and susceptibility to gastrointestinal neoplasia. The New England journal of medicine, 363(27), 2628–2637. https://doi.org/10.1056/NEJMoa1006565

Melanoma

1.    Rangel-Pozzo,A., Wechsler, J., Groult, J., Laetitia Da Meda, Lebbe, C., & Mai, S.(2022). Telomere-Associated Changes in Nuclear Architecture of Cancer-Associated Macrophage-like Cells in Liquid Biopsies from Melanoma Patients. Biomedicines,10(10), 2391–2391. https://doi.org/10.3390/biomedicines10102391

2.    de Souza, C.F., Xander, P., Monteiro, A. C., Silva, A. G., da Silva, D. C., Mai, S.,Bernardo, V., Lopes, J. D., & Jasiulionis, M. G. (2012). Mining gene expression signature for the detection of pre-malignant melanocytes and early melanomas with risk for metastasis. PloS one, 7(9), e44800. https://doi.org/10.1371/journal.pone.0044800

3.    Silva, A.G., Graves, H. A., Guffei, A., Ricca, T. I., Mortara, R. A., Jasiulionis, M.G., & Mai, S. (2010). Telomere-centromere-driven genomic instability contributes to karyotype evolution in a mouse model of melanoma. Neoplasia(New York, N.Y.), 12(1), 11–19. https://doi.org/10.1593/neo.91004

Cervical cancer

1.    Guijon, F. B., Greulich-Bode, K., Paraskevas, M., Baker, P.,& Mai, S. (2007). Premalignant cervical lesions are characterized by dihydro folate reductase gene amplification and c-Myc overexpression: possible biomarkers. Journal of lower genital tract disease, 11(4),265–272. https://doi.org/10.1097/LGT.0b013e31803c4df0

Alzheimer’s Disease

1.    Garcia, A.,Mathur, S., Kalaw, M. C., McAvoy, E., Anderson, J., Luedke, A., Itorralba, J.,& Mai, S. (2017). Quantitative 3D Telomeric Imaging of Buccal Cells RevealsAlzheimer's Disease-Specific Signatures. Journal of Alzheimer's disease:JAD, 58(1), 139–145. https://doi.org/10.3233/JAD-161169

2.    Garcia, A.,Huang, D., Righolt, A., Righolt, C., Kalaw, M. C., Mathur, S., McAvoy, E.,Anderson, J., Luedke, A., Itorralba, J., & Mai, S. (2017). Super-resolution structure of DNA significantly differs in buccal cells of controls and Alzheimer's patients. Journal of cellular physiology, 232(9), 2387–2395.https://doi.org/10.1002/jcp.25751

3.    Fish, P. V.,Steadman, D., Bayle, E. D., & Whiting, P. (2019). New approaches for the treatment of Alzheimer's disease. Bioorganic & medicinal chemistry letters, 29(2), 125–133. https://doi.org/10.1016/j.bmcl.2018.11.034

4.    Mai S.Editorial: Towards New Approaches in Alzheimer’s Research and Alzheimer’s Disease (2016). Curr Alzheimer Res. 13(7):728-9

5.    Mathur, S.,Glogowska, A., McAvoy, E., Righolt, C., Rutherford, J., Willing, C., Banik, U.,Ruthirakuhan, M., Mai, S., & Garcia, A. (2014). Three-dimensional quantitative imaging of telomeres in buccal cells identifies mild, moderate, and severe Alzheimer's disease patients. Journal of Alzheimer's disease: JAD, 39(1), 35–48. https://doi.org/10.3233/JAD-130866

6.    Rak M.,Gough K., Del Bigio MR., Mai S., Westaway D. In Situ FTIR Spectro microscopy of Brain Tissue from a Transgenic Mouse Model of Alzheimer Disease. Vibrational Spectroscopy 38, 133-141.

Genomic instability & TeloView Technology

1.    Lauriola,A., Pierpaola Davalli, Gaetano Marverti, Caporali, A., Mai, S., & DomenicoD’Arca. (2022). Telomere Dysfunction Is Associated with Altered DNA Organization in Trichoplein/Tchp/Mitostatin (TpMs) Depleted Cells. Biomedicines,10(7), 1602–1602. https://doi.org/10.3390/biomedicines10071602

2.    Freitas, M.O., Santos, Barbosa, L. S., de, F., Pellegrini, S. P., Santos, N. C. K., Paiva,I. S., A Rangel-Pozzo, L Sisdelli, Mai, S., Land, M. G. P., Ribeiro, M. G.,& Ribeiro, M. C. M. (2022). Cellular consequences of small super numerary marker chromosome derived from chromosome 12: mosaicism in daughter and father. Brazilian Journal of Medical and Biological Research, 55. https://doi.org/10.1590/1414-431x2022e12072

3.    Yu, T.,Slone, J., Liu, W., Barnes, R., Opresko, P. L., Wark, L., Mai, S., Horvath, S.,& Huang, T. (2022). Premature aging is associated with higher levels of 8‐oxoguanineand increased DNA damage in the Polg mutator mouse. Aging Cell, 21(9). https://doi.org/10.1111/acel.13669

4.    Rangel-Pozzo,A., Booth, S., Yu, P. L. I., Singh, M., Selivanova, G., & Mai, S. (2020).p53 CRISPR Deletion Affects DNA Structure and Nuclear Architecture. Journalof Clinical Medicine, 9(2), 598. https://doi.org/10.3390/jcm9020598

5.    Szczurek,A., Klewes, L., Xing, J., Gourram, A., Birk, U., Knecht, H., Dobrucki, J. W.,Mai, S., & Cremer, C. (2017). Imaging chromatin nanostructure with binding-activated localization microscopy based on DNA structure fluctuations. Nucleic acids research, 45(8), e56. https://doi.org/10.1093/nar/gkw1301

6.    Rousseau,P., Khondaker, S., Zhu, S., Lauzon, C., Mai, S., & Autexier, C. (2016). An intact putative mouse telomerase essential N-terminal domain is necessary forproper telomere maintenance. Biology of the cell, 108(4), 96–112. https://doi.org/10.1111/boc.201500089

7.    Bronshtein,I., Kepten, E., Kanter, I., Berezin, S., Lindner, M., Redwood, A. B., Mai, S.,Gonzalo, S., Foisner, R., Shav-Tal, Y., & Garini, Y. (2015). Loss of lamin A function increases chromatin dynamics in the nuclear interior. Nature communications, 6, 8044. https://doi.org/10.1038/ncomms9044

8.    Righolt, C.H., Schmälter, A. K., Kuzyk, A., Young, I. T., van Vliet, L. J., & Mai, S.(2015). Measuring murine chromosome orientation in interphase nuclei. Cytometry. Part A: the journal of the International Society for Analytical Cytology,87(8), 733–740. https://doi.org/10.1002/cyto.a.22674

9.    Samassekou,O., Bastien, N., Lichtensztejn, D., Yan, J., Mai, S., & Drouin, R. (2014).Different TP53 mutations are associated with specific chromosomal rearrangements, telomere length changes, and remodeling of the nuclear architecture of telomeres. Genes, chromosomes & cancer, 53(11),934–950. https://doi.org/10.1002/gcc.22205

10. Schmälter,A. K., Kuzyk, A., Righolt, C. H., Neusser, M., Steinlein, O. K., Müller, S.,& Mai, S. (2014). Distinct nuclear orientation patterns for mouse chromosome11 in normal B lymphocytes. BMC cell biology, 15, 22. https://doi.org/10.1186/1471-2121-15-22

11. Mai S.(2013). 3D nuclear organization and genomic instability in cancer. BMC proceedings, 7 (Suppl 2), K17. https://doi.org/10.1186/1753-6561-7-S2-K17

12. Righolt, C.,& Mai, S. (2012). Shattered and stitched chromosomes-chromothripsis and chromoanasynthesis-manifestations of a new chromosome crisis?. Genes, chromosomes & cancer, 51(11), 975–981. https://doi.org/10.1002/gcc.21981

13. Sandhu, S.,Wu, X., Nabi, Z., Rastegar, M., Kung, S., Mai, S., & Ding, H. (2012). Lossof HLTF function promotes intestinal carcinogenesis. Molecular cancer,11, 18. https://doi.org/10.1186/1476-4598-11-18

14. Chen, Q.,Shi, X., Rudolph, C., Yu, Y., Zhang, D., Zhao, X., Mai, S., Wang, G.,Schlegelberger, B., & Shi, Q. (2011). Recurrent trisomy and Robertsonian translocation of chromosome 14 in murine iPS cell lines. Chromosome research:an international journal on the molecular, supramolecular and evolutionary aspects of chromosome biology, 19(7), 857–868. https://doi.org/10.1007/s10577-011-9239-y

15. Gadji, M.,Vallente, R., Klewes, L., Righolt, C., Wark, L., Kongruttanachok, N., Knecht,H., & Mai, S. (2011). Nuclear remodeling as a mechanism for genomic instability in cancer. Advances in cancer research, 112, 77–126. https://doi.org/10.1016/B978-0-12-387688-1.00004-1

16. Dawson, A.J., Bal, S., McTavish, B., Tomiuk, M., Schroedter, I., Ahsanuddin, A. N.,Seftel, M. D., Vallente, R., Mai, S., Cotter, P. D., Hovanes, K., Gorre, M.,& Gunn, S. R. (2011). Inversion and deletion of 16q22 defined by array CGH,FISH, and RT-PCR in a patient with AML. Cancer genetics, 204(6),344–347. https://doi.org/10.1016/j.cancergen.2011.05.005

17. Righolt, C.H., Wiener, F., Taylor-Kashton, C., Harizanova, J., Vermolen, B. J., Garini,Y., Young, I. T., & Mai, S. (2011). Translocation frequencies andchromosomal proximities for selected mouse chromosomes in primary Blymphocytes. Cytometry. Part A: the journal of the International Societyfor Analytical Cytology, 79(4), 276–283. https://doi.org/10.1002/cyto.a.21038

18. Klewes, L.,Höbsch, C., Katzir, N., Rourke, D., Garini, Y., & Mai, S. (2011). Novelautomated three-dimensional genome scanning based on the nuclear architecture of telomeres. Cytometry. Part A : the journal of the International Society for Analytical Cytology, 79(2), 159–166. https://doi.org/10.1002/cyto.a.21012

19. Dawson, A.J., Yanofsky, R., Vallente, R., Bal, S., Schroedter, I., Liang, L., & Mai,S. (2011). Array comparative genomic hybridization and cytogenetic analysis in pediatric acute leukemias. Current oncology (Toronto, Ont.), 18(5),e210–e217. https://doi.org/10.3747/co.v18i5.770

20. Klonisch,T., Wark, L., Hombach-Klonisch, S., & Mai, S. (2010). Nuclear imaging in three dimensions: a unique tool in cancer research. Annals of anatomy,192(5), 292–301. https://doi.org/10.1016/j.aanat.2010.07.007

21. Millau, J. F., Mai, S., Bastien, N., & Drouin, R. (2010). p53functions and cell lines: have we learned the lessons from the past?. Bio Essays: news and reviews in molecular, cellular and developmental biology, 32(5), 392–400. https://doi.org/10.1002/bies.200900160

22. Mai S.(2010). Initiation of telomere-mediated chromosomal rearrangements in cancer. Journalof cellular biochemistry, 109(6), 1095–1102. https://doi.org/10.1002/jcb.22501

23. Lacoste, S.,Wiechec, E., Dos Santos Silva, A. G., Guffei, A., Williams, G., Lowbeer, M.,Benedek, K., Henriksson, M., Klein, G., & Mai, S. (2010). Chromosomal rearrangements after ex vivo Epstein-Barr virus (EBV) infection of human B cells. Oncogene, 29(4), 503–515. https://doi.org/10.1038/onc.2009.359

24. Davie, J.R., Drobic, B., Perez-Cadahia, B., He, S., Espino, P. S., Sun, J. M., Chen, H.Y., Dunn, K. L., Wark, L., Mai, S., Khan, D. H., Davie, S. N., Lu, S., Peltier,C. P., & Delcuve, G. P. (2010). Nucleosomal response, immediate-early gene expression and cell transformation. Advances in enzyme regulation,50(1), 135–145. https://doi.org/10.1016/j.advenzreg.2009.10.008

25. Gonzalez-Suarez,I., Redwood, A. B., Perkins, S. M., Vermolen, B., Lichtensztejin, D., Grotsky,D. A., Morgado-Palacin, L., Gapud, E. J., Sleckman, B. P., Sullivan, T., Sage,J., Stewart, C. L., Mai, S., & Gonzalo, S. (2009). Novel roles for A-type lamins in telomere biology and the DNA damage response pathway. The EMBO journal, 28(16), 2414–2427. https://doi.org/10.1038/emboj.2009.196

26. Bronstein,I., Israel, Y., Kepten, E., Mai, S., Shav-Tal, Y., Barkai, E., & Garini, Y.(2009). Transient anomalous diffusion of telomeres in the nucleus of mammalian cells. Physical review letters, 103(1), 018102. https://doi.org/10.1103/PhysRevLett.103.018102

27. Dunn, K. L.,He, S., Wark, L., Delcuve, G. P., Sun, J. M., Yu Chen, H., Mai, S., &Davie, J. R. (2009). Increased genomic instability and altered chromosoma lprotein phosphorylation timing in HRAS-transformed mouse fibroblasts. Genes, chromosomes & cancer, 48(5), 397–409. https://doi.org/10.1002/gcc.20649

28. GonçalvesDos Santos Silva, A., Sarkar, R., Harizanova, J., Guffei, A., Mowat, M.,Garini, Y., & Mai, S. (2008). Centromeres in cell division, evolution, nuclear organization and disease. Journal of cellular biochemistry,104(6), 2040–2058. https://doi.org/10.1002/jcb.21766

29. Guffei, A.,Lichtensztejn, Z., Gonçalves Dos Santos Silva, A., Louis, S. F., Caporali, A.,& Mai, S. (2007). c-Myc-dependent formation of Robertsonian translocationchromosomes in mouse cells. Neoplasia (New York, N.Y.), 9(7), 578–588. https://doi.org/10.1593/neo.07355

30. Zakharenko,L. P., Kovalenko, L. V., & Mai, S. (2007). Fluorescence in situ hybridization analysis of hobo, mdg1 and Dm412 transposable elements reveals genomic instability following the Drosophila melanogaster genome sequencing. Heredity,99(5), 525–530. https://doi.org/10.1038/sj.hdy.6801029

31. Sarkar, R.,Guffei, A., Vermolen, B. J., Garini, Y., & Mai, S. (2007). Alterations of centromere positions in nuclei of immortalized and malignant mouse lymphocytes. Cytometry. Part A : the journal of the International Society for Analytical Cytology, 71(6), 386–392. https://doi.org/10.1002/cyto.a.20395

32. Caporali,A., Wark, L., Vermolen, B. J., Garini, Y., & Mai, S. (2007). Telomeric aggregates and end-to-end chromosomal fusions require myc box II. Oncogene,26(10), 1398–1406. https://doi.org/10.1038/sj.onc.1209928

33. Mai, S.,& Imreh, S. (2007). Non-random genomic instability in cancer: a fact, not an illusion. Seminars in cancer biology, 17(1), 1–4. https://doi.org/10.1016/j.semcancer.2006.11.002

34. Kuttler, F.,& Mai, S. (2007). Formation of non-random extrachromosomal elements during development, differentiation and oncogenesis. Seminars in cancer biology,17(1), 56–64. https://doi.org/10.1016/j.semcancer.2006.10.007

35. Mai, S.,& Garini, Y. (2006). The significance of telomeric aggregates in the interphase nuclei of tumor cells. Journal of cellular biochemistry,97(5), 904–915. https://doi.org/10.1002/jcb.20760

36. Mai, S.,& Garini, Y. (2005). Oncogenic remodeling of the three-dimensional organization of the interphase nucleus: c-Myc induces telomeric aggregates whose formation precedes chromosomal rearrangements. Cell cycle(Georgetown, Tex.), 4(10), 1327–1331. https://doi.org/10.4161/cc.4.10.2082

37. Vermolen, B.J., Garini, Y., Mai, S., Mougey, V., Fest, T., Chuang, T. C., Chuang, A. Y.,Wark, L., & Young, I. T. (2005). Characterizing the three-dimensional organization of telomeres. Cytometry. Part A : the journal of the International Society for Analytical Cytology, 67(2), 144–150. https://doi.org/10.1002/cyto.a.20159

38. Louis, S.F., Vermolen, B. J., Garini, Y., Young, I. T., Guffei, A., Lichtensztejn, Z.,Kuttler, F., Chuang, T. C., Moshir, S., Mougey, V., Chuang, A. Y., Kerr, P. D.,Fest, T., Boukamp, P., & Mai, S. (2005). c-Myc induces chromosomal rearrangements through telomere and chromosome remodeling in the interphase nucleus. Proceedings of the National Academy of Sciences of the UnitedStates of America, 102(27), 9613–9618. https://doi.org/10.1073/pnas.0407512102

39. Fest, T.,Guffei, A., Williams, G., Silva, S., & Mai, S. (2005). Uncoupling of genomic instability and tumorigenesis in a mouse model of Burkitt's lymphoma expressing a conditional box II-deleted Myc protein. Oncogene, 24(18),2944–2953. https://doi.org/10.1038/sj.onc.1208467

40. Ermler, S.,Krunic, D., Knoch, T. A., Moshir, S., Mai, S., Greulich-Bode, K. M., & Boukamp, P. (2004). Cell cycle-dependent 3D distribution of telomeres and telomere repeat-binding factor 2 (TRF2) in HaCaT and HaCaT-myc cells. Europeanjournal of cell biology, 83(11-12), 681–690. https://doi.org/10.1078/0171-9335-00430

41. Louis, S.,Benedek, K., Mowat, M., Klein, G., & Mai, S. (2004). Elongated mouse chromosomes suitable for enhanced molecular cytogenetics. Cytotechnology,44(3), 143–149. https://doi.org/10.1007/s10616-004-2978-2

42. Benedek, K.,Chudoba, I., Klein, G., Wiener, F., & Mai, S. (2004). Rearrangements of thetelomeric region of mouse chromosome 11 in Pre-B ABL/MYC cells revealed bymBANDing, spectral karyotyping, and fluorescence in-situ hybridization with a subtelomeric probe. Chromosome research, 12(8), 777–785. https://doi.org/10.1007/s10577-005-5264-z

43. Chuang, T.C., Moshir, S., Garini, Y., Chuang, A. Y., Young, I. T., Vermolen, B., van den Doel, R., Mougey, V., Perrin, M., Braun, M., Kerr, P. D., Fest, T., Boukamp,P., & Mai, S. (2004). The three-dimensional organization of telomeres in the nucleus of mammalian cells. BMC biology, 2, 12. https://doi.org/10.1186/1741-7007-2-12